Mechanisms of acid resistance in enterohemorrhagic Escherichia coli.

نویسندگان

  • J Lin
  • M P Smith
  • K C Chapin
  • H S Baik
  • G N Bennett
  • J W Foster
چکیده

Enterohemorrhagic strains of Escherichia coli must pass through the acidic gastric barrier to cause gastrointestinal disease. Taking into account the apparent low infectious dose of enterohemorrhagic E. coli, 11 O157:H7 strains and 4 commensal strains of E. coli were tested for their abilities to survive extreme acid exposures (pH 3). Three previously characterized acid resistance systems were tested. These included an acid-induced oxidative system, an acid-induced arginine-dependent system, and a glutamate-dependent system. When challenged at pH 2.0, the arginine-dependent system provided more protection in the EHEC strains than in commensal strains. However, the glutamate-dependent system provided better protection than the arginine system and appeared equally effective in all strains. Because E. coli must also endure acid stress imposed by the presence of weak acids in intestinal contents at a pH less acidic than that of the stomach, the ability of specific acid resistance systems to protect against weak acids was examined. The arginine- and glutamate-dependent systems were both effective in protecting E. coli against the bactericidal effects of a variety of weak acids. The acids tested include benzoic acid (20 mM; pH 4.0) and a volatile fatty acid cocktail composed of acetic, propionic, and butyric acids at levels approximating those present in the intestine. The oxidative system was much less effective. Several genetic aspects of E. coli acid resistance were also characterized. The alternate sigma factor RpoS was shown to be required for oxidative acid resistance but was only partially involved with the arginine- and glutamate-dependent acid resistance systems. The arginine decarboxylase system (including adi and its regulators cysB and adiY) was responsible for arginine-dependent acid resistance. The results suggest that several acid resistance systems potentially contribute to the survival of pathogenic E. coli in the different acid stress environments of the stomach (pH 1 to 3) and the intestine (pH 4.5 to 7 with high concentrations of volatile fatty acids). Of particular importance to the food industry was the finding that once induced, the acid resistance systems will remain active for prolonged periods of cold storage at 4 degrees C.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Antibacterial effects of aqueous and alcoholic extracts of Thyme on enterohemorrhagic Escherichia coli

Background: Because of increasing resistance to current antibiotics, many attempts have been made by the researchers to find new compounds of plant derivatives as substitute for non-effective antibiotics. This research was performed to study the antibacterial properties of aquatic and alcoholic extracts of thyme on the clinical and standard strains of enterohemorrhagic Escherichia coli. Materi...

متن کامل

Insertion mutagenesis of wca reduces acid and heat tolerance of enterohemorrhagic Escherichia coli O157:H7.

Strains of enterohemorrhagic Escherichia coli (EHEC) serotype O157:H7 produce under stress copious amounts of exopolysaccharide (EPS) composed of colanic acid (CA). Studies were performed to evaluate the association of production of CA with survival of EHEC under adverse environmental conditions. A CA-deficient mutant, M4020, was obtained from a CA-proficient parental strain, E. coli O157:H7 W6...

متن کامل

Characterization of enterohemorrhagic Escherichia coli strains based on acid resistance phenotypes.

Acid resistance is perceived to be an important property of enterohemorrhagic Escherichia coli strains, enabling the organisms to survive passage through the acidic environment of the stomach so that they may colonize the mammalian gastrointestinal tract and cause disease. Accordingly, the organism has developed at least three genetically and physiologically distinct acid resistance systems whi...

متن کامل

Influence of acidulant identity on the effects of pH and acid resistance on the radiation resistance of Escherichia coli O157:H7

The effects of pH (4.0–5.5), acid identity (acetic, citric, lactic, malic, and hydrochloric), and the induction of pH-dependent stationary phase acid resistance on the radiation resistance of E. coli O157:H7 Ent-C9490 was studied using cells grown in Tryptic Soy Broth with and without dextrose (induced and non-induced to acid resistance) and then resuspended in brain–heart infusion broth contai...

متن کامل

Modified Vero cell induced by Bifidobacterium bifidum inhibits enterohemorrhagic Escherichia coli O157:H7 cytopathic effect

Enterohemorrhagic Escherichia coli (EHEC), such as E. coli O157:H7, are emerging food-borne pathogens worldwide. This micro-organism can damage the epithelial tissue of the large intestine. The cytotoxic effects can be neutralized by probiotics such as Bifidobacterium bifidum. Probiotics are viable cells that have beneficial effects on the health of the host. The preventing activity of B. bifid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 62 9  شماره 

صفحات  -

تاریخ انتشار 1996